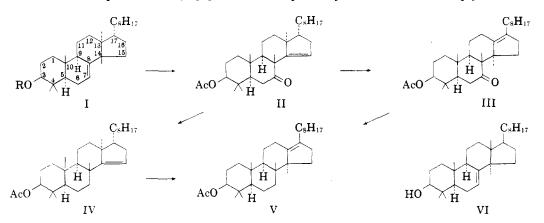
We are indebted to the American Cancer Society for an Institutional Research Grant and through the Committee on Growth of the National Research Council for a research grant in support of this work.

DEPARTMENT OF CHEMISTRY WAYNE UNIVERSITY	Carl Djerassi A. J. Manson ⁸
Detroit, Michigan Alston Ochsner Medical Foundation	A. Segaloff
DEPARTMENT OF MEDICINE TULANE UNIVERSITY SCHOOL OF MEDICIN	IE

NEW ORLEANS, LOUISIANA

(8) Postdoctorate research fellow at Wayne University, $1954{-}1955.$

Received March 5, 1956


The Constitution of Butyrospermol

Sir:

A recent Communication¹ described the conversion of butyrospermol into euphol. Osmic acid converts dihydrobutyrospermyl acetate into a triol which forms a diacetate [m.p. 181–182°, $[\alpha]_{\rm D}$ -82° (c, 1.2).² Found: C, 74.9; H, 10.9. C₃₄H₅₈O₅ requires C, 74.7; H, 10.7] and this on heating at 100° gives eupha-7:9(11)-dienyl acetate [m.p. and mixture m.p. 111–112°, $[\alpha]_{\rm D}$ -78°

7:24-dien- 3β -ol or an 8ξ -eupha-9(11):24-dien- 3β -ol.^{1,4} We now wish to describe experiments which identify butyrospermol as 9α -eupha-7:24-dien- 3β -ol.

Oxidation of dihydrobutyrospermyl acetate (I, R = Ac) with chromic acid yields 7-oxoapoeuph-14-enyl acetate (II) [m.p. 119–120°, $[\alpha]_{\rm D}$ -85° $(c, 1.0), \epsilon_{2100} = 5,400; I.R.$ bands at 1735 (acetate) and 1710 cm.⁻¹ (six-ring ketone). Found: C, 79.2; H, 11.1. C₃₂H₅₂O₃ requires C, 79.3; H, 10.8], which with mineral acid gives 7-oxoisoeuph-13(17)-enyl acetate (III) [m.p. 112–113°, $[\alpha]_{\rm D}$ –50° (c, 1.3), $\epsilon_{2100} = 6,700$. Found: C, 79.6; H, 11.0. C₃₂H₅₂O₃ requires C, 79.3; H, 10.8]. Wolff-Kishner reduction of III, and reacetylation, gives isoeuph-13(17)envl acetate $(V)^{5}$ [m.p. and mixture m.p. 110° $[\alpha]_{D} - 9^{\circ}$ (c, 2.0). Found: C, 81.7; H, 11.7. Calc'd for C₃₂H₅₄O₂: C, 81.6; H, 11.6]. Oxidation of III with selenium dioxide yields 7-oxoisoeupha-11:13(17)-dienyl acetate [m.p. 107-109°, $[\alpha]_{D}$ $-45^{\circ}(c, 0.2), \lambda_{\text{max}}$ 2470, 2550 (log. $\epsilon = 4.33$) and 2640 Å. Found: C, 79.4; H, 10.45. C₃₂H₅₀O₃ requires C, 79.6; H, 10.4]. Wolff-Kishner reduction of 7oxoapoeuph-14-envl acetate (II), and re-acetylation gives appeuph-14-envl acetate (IV) [m.p. 114-115°, $[\alpha]_{D} - 12^{\circ} (c, 1.1), \epsilon_{2100} = 5,300.$ Found: C, 81.5; H, 11.7. C₃₂H₅₄O₂ requires C, 81.6; H, 11.6] isomerized by a short treatment with dry hydrogen chloride at 0° to *iso*euph-13(17)-enyl acetate $(V)^5$ [m.p. and mixture m.p. 109–110°, $[\alpha]_{D} - 10^{\circ}$ (c, 0.4)]. These acid conditions have no effect upon euph-8-envl acetate and simply convert dihy-

(c, 1.0), λ_{max} . 2320, 2400 (log. $\epsilon = 4.24$) and 2470 Å.]. The less reactive double bond in butyrospermol is therefore trisubstituted and not tetra-substituted³ and this alcohol is either a 9 ξ -eupha-

drobutyrospermyl acetate (I, R = Ac) into euph-8enyl acetate.¹ Selenium dioxide converts 7-oxoapoeuph-14-enyl acetate (II) into 7-oxoapoeupha-5:14-dienyl acetate [m.p. 103-104°, $[\alpha]_{\rm D}$ -126° (c, 1.2), $\lambda_{\rm max}$. 2350 Å. (ϵ = 14,000). Found: C, 79.4; H, 10.4. C₃₂H₅₀O₃ requires C, 79.6; H, 10.4].

The oxidation of dihydrobutyrospermyl acetate to 7-oxo*apo*euph-14-enyl acetate (II) establishes that the double bond in the former is between C_7 and C_8 . We understand that Professor E. R. H.

⁽¹⁾ D. S. Irvine, W. Lawrie, A. S. McNab, and F. S. Spring, *Chemistry & Industry*, 626 (1955).

⁽²⁾ Specific rotations are for chloroform solutions at 15°.
(3) K. Seitz and O. Jeger, *Helv. Chim. Acta*, 32, 1626 (1949); T. G. Halsall, *Chem. and Ind.*, 867 (1951).

⁽⁴⁾ M. C. Dawson, T. G. Halsall, E. R. H. Jones, G. D. Meakins, and P. C. Phillips, *Chemistry & Industry*, 918 (1955); E. R. H. Jones and T. G. Halsall, *Fortschritte der Chemie organischer Naturstoffe*, Springer-Verlag, XII, 108 (1955).

⁽⁵⁾ D. H. R. Barton, J. F. McGhie, M. K. Pradhan, and S. A. Knight, *J. Chem. Soc.*, 876 (1955).

	Mp						
	Alcohol	Acetate	Benzoate	Ketone	Δ_1	Δ_2	Δ_3
Lanost-7-enol (VI) Dihydrobutyro- spermol (I, R =	$+45^{\circ}$	+156°	$+267^{\circ}$	-85°	+111°	+222°	-130°
H)	-60	+56	+164	-182	+116	+224	-122

Jones, F.R.S., and his collaborators, have reached the same conclusion using a different method. Of more importance, the reactions described above also show that the 9-hydrogen in butyrospermol is α -orientated. The methyl group migration included in the conversion of dihydrobutyrospermyl acetate into II is considered to synchronize with attack by the oxidizing agent at the double bond; accordingly the reaction does not involve the 9hydrogen in dihydrobutyrospermyl acetate which has the same orientation (α) as that in *iso*euph-13(17)-envl acetate (V).

Although the change in molecular rotation on oxidation of many 3β -hydroxy- 5α -steroids and 3β hydroxytriterpenoids to the corresponding 3-ketones is positive, the change when butyrospermol and dihydrobutyrospermol (I, R = H) are oxidized to the corresponding 3-ketones is in each case negative.⁶ As shown below, substitution of hydrogens at 4, 4', and 14 in cholestanol and ergostanol by methyl groups has a considerable effect upon the contribution of ring A to the molecular rotation. Furthermore, the change in molecular rotation when lanost-7-en- 3β -ol (VI) is oxidized to lanost-7-en-3-one [m.p. 146–147°, $[\alpha]_{\rm D}$ –20° (c, 2.8). Found: C, 84.7; H, 12.0. C₃₀H₅₀O requires C, 84.4; H, 11.8] is negative and almost identical with the related value for dihydrobutyrospermol. The close correspondence in the Δ_1 , Δ_2 , and Δ_3 values for lanost-7-en-3β-ol and dihydrobutyro-

(6) Sir Ian Heilbron, E. R. H. Jones, and P. A. Robins, J. Chem. Soc., 444 (1949).

spermol confirms the steric formula (I, R = H) proposed for the latter compound.

	Hydro- carbon	M _D 3β-Alco- hol	3-Ke- tone	Δ_3	$\Delta_{\rm CO}$
Cholestane	+91°	+93°	$+159^{\circ}$	$+66^{\circ}$	$+68^{\circ}$
Ergostane	+66	+64	+140	+76	+74
Lanostane	+149	+150	+116	-34	-33
Laudane	+107	+93	+62	-31	-45

We now formulate the euph-7-enyl acetate obtained from 7-oxoeuph-8-enyl acetate, by Wolff-Kishner reduction and re-acetylation,⁵ as 9β euph-7-enyl acetate. The method of formation requires that its 9-hydrogen has the more stable configuration and this must be β ; 9β -euph-7-enyl acetate can assume an all-chair (or half-chair) conformation whereas that of 9α -euph-7-enyl acetate (dihydrobutyrospermyl acetate) includes a boat (or half-boat). 9β -Euph-7-enyl acetate is unchanged by treatment with hydrogen chloride using conditions which convert dihydrobutyrospermyl acetate (boat or half-boat) into euph-8-enyl acetate (all-chair or half-chair).

THE ROYAL TECHNICAL COLLEGE, GLASGOW, SCOTLAND

> WILLIAM LAWRIE WILLIAM HAMILTON F. S. Spring H. S. Watson

Received March 5, 1956